首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5089篇
  免费   1289篇
  国内免费   2677篇
测绘学   34篇
大气科学   81篇
地球物理   743篇
地质学   7484篇
海洋学   99篇
天文学   96篇
综合类   318篇
自然地理   200篇
  2024年   19篇
  2023年   108篇
  2022年   206篇
  2021年   226篇
  2020年   250篇
  2019年   303篇
  2018年   265篇
  2017年   305篇
  2016年   328篇
  2015年   346篇
  2014年   381篇
  2013年   321篇
  2012年   403篇
  2011年   397篇
  2010年   357篇
  2009年   428篇
  2008年   295篇
  2007年   380篇
  2006年   378篇
  2005年   326篇
  2004年   344篇
  2003年   298篇
  2002年   265篇
  2001年   260篇
  2000年   261篇
  1999年   268篇
  1998年   235篇
  1997年   211篇
  1996年   179篇
  1995年   134篇
  1994年   143篇
  1993年   121篇
  1992年   94篇
  1991年   57篇
  1990年   45篇
  1989年   33篇
  1988年   31篇
  1987年   19篇
  1986年   14篇
  1985年   6篇
  1984年   6篇
  1979年   5篇
  1976年   1篇
  1954年   3篇
排序方式: 共有9055条查询结果,搜索用时 15 毫秒
101.
喜马拉雅造山带中段定结地区拆离断层   总被引:1,自引:1,他引:1  
定结地区位于喜马拉雅造山带中段,发育大量的低角度伸展拆离断层,这些拆离断层中部分构成了藏南拆离系的主体。它们基本上垂直于造山带走向伸展,各拆离断层特征显著,普遍发育糜棱岩,糜棱岩类型复杂,主要有硅质糜棱岩、长英质糜棱岩、花岗质糜棱岩。在研究区的北部,拆离断层呈环状产出,构成变质核杂岩三层结构中的中间层,规模一般较大;同时拆离断层使变质核杂岩体盖层中的部分地层拆离减薄;在研究区南部拆离断层呈线状延伸很远,总体上平行造山带延伸,构成了藏南拆离系重要组成部分。部分拆离断层同韧性剪切带平行产出,形成拆离剪切的脆韧性体系。  相似文献   
102.
吐哈盆地中央构造带正反转演化特征   总被引:5,自引:3,他引:5  
吐哈盆地中央构造带由火焰山构造和七克台构造组成。中央构造带形成于三叠纪晚期至侏罗纪早期,表现为伸展构造特征,生长断层上盘地层厚度明显大于下盘,并于断层上盘所在的台北凹陷形成沉降中心。晚侏罗世,由于拉萨陆块与欧亚大陆的碰撞作用导致吐哈盆地由伸展盆地转变为挤压盆地,中央构造带也于此时发生构造反转,由早期的伸展正断层转变为挤压逆断层。发生于55Ma的喜山构造事件对天山地区产生了深刻的影响,但影响时间略有滞后,大致发生在晚渐新世至早中新世,中央构造带即在此次构造事件中强烈变形,逆冲出露于地表。  相似文献   
103.
以大别造山带南部菖蒲地区为解剖区,结合区域地质调查分析,建立了包括浅变质岩层、超高压变质岩片在内的构造地层序列—岩片组合。对其组成特征、界面性质、形成时代、变形序列等,进行了较系统阐明,并对叠加褶皱型式及形成机制进行了讨论。  相似文献   
104.
东亚陆缘带构造扩张的深部热力学机制   总被引:6,自引:2,他引:6  
近年来,我国地球科学家提出“陆缘构造扩张”观点,较好的解释了亚洲东部大陆边缘于新生代发生扩张离散运动的原因。本文基于“陆缘构造扩张”观点,探讨东亚陆缘带构造扩张的深部热力学机制。东亚陆缘带是具有强烈岩浆活动和构造变形的扩张带,此构造带的主要地球物理特征是频繁的地震活动和明显的地热异常。东亚陆缘扩张带地震层析成像显示,太平洋板块低角度俯冲到欧亚板块之下并平卧于670km相变界面之上。这种图像可能是俯冲后撤导致陆缘扩张的结果。热模拟及地球动力学计算表明:俯冲后撤时间距今约76Ma,海沟带后撤为陆缘壳体的生长留下空间,并形成东亚陆缘壳体增生扩展的前沿带,陆缘扩张量约700km。  相似文献   
105.
The Hida marginal belt (HMB), which consists of various kinds of fault-bound blocks, is located between the continental massif of the Hida belt and the Mesozoic accretionary complex of the Mino belt in Central Japan. Detailed field investigation reveals that the HMB had grown through the two different movements, i.e., Jurassic dextral and Cretaceous sinistral movements. The Jurassic dextral ductile shear zones run in the southern marginal part of the Hida belt and the northern part of the HMB, whereas the Cretaceous sinistral cataclastic shear zones occur in the southern part of the HMB and the northern marginal part of the Mino belt. Geologic map and field evidence seem to suggest that the Jurassic dextral movement form the fault-bound blocks of the HMB to form the basic structure of the Hida marginal belt, i.e., formation of the ‘proto-HMB.’ Following the dextral movement, the sinistral one restructured the ‘proto-HMB’ to complete the present feature of the Hida marginal belt. The Cretaceous sinistral movement might result in the sinistral collision between the proto-HMB and the Mino belt.  相似文献   
106.
The central structure belt in Turpan-Hami basin is composed of the Huoyanshan structure and Qiketai structure formed in late Triassic-early Jurassic, and is characterized by extensional tectonics. The thickness of strata in the hanging wall of the growth fault is obviously larger than that in the footwall, and a deposition center was evolved in the Taibei sag where the hanging wall of the fault is located. In late Jurassic the collision between Lhasa block and Eurasia continent resulted in the transformation of the Turpan-Hami basin from an extensional structure into a compressional structure, and consequently in the tectonic inversion of the central structure belt of the Turpan-Hami basin from the extensional normal fault in the earlier stage to the compressive thrust fault in the later stage. The Tertiary collision between the Indian plate and the Eurasian plate occurred around 55Ma, and this Himalayan orogenic event has played a profound role in shaping the Tianshan area, only the effect of the collision to this area was delayed since it culminated here approximately in late Oligocene-early Miocene. The central structure belt was strongly deformed and thrusted above the ground as a result of this tectonic event.  相似文献   
107.
Abstract P–T conditions, mineral isograds, the relation of the latter to foliation planes and kinematic indicators are used to elucidate the tectonic nature and evolution of a shear zone in an orogen exhumed from mid‐crustal depths in western Turkey. Furthermore, we discuss whether simple monometamorphic fabrics of rock units from different nappes result from one single orogeny or are related to different orogenies. Metasedimentary rocks from the Çine and Selimiye nappes at the southern rim of the Anatolide belt of western Turkey record different metamorphic evolutions. The Eocene Selimiye shear zone separates both nappes. Metasedimentary rocks from the Çine nappe underneath the Selimiye shear zone record maximum P–T conditions of about 7 kbar and >550 °C. Metasedimentary rocks from the overlying Selimiye nappe have maximum P–T conditions of 4 kbar and c. 525 °C near the base of the nappe. Kinematic indicators in both nappes are related to movement on the Selimiye shear zone and consistently show a top‐S shear sense. Metamorphic grade in the Selimiye nappe decreases structurally upwards as indicated by mineral isograds defining the garnet‐chlorite zone at the base, the chloritoid‐biotite zone and the biotite‐chlorite zone at the top of the nappe. The mineral isograds in the Selimiye nappe run parallel to the regional SR foliation, parallel the Selimiye shear zone and indicate that the Selimiye shear zone formed during this prograde greenschist to lower amphibolite facies metamorphic event but remained active after the peak of metamorphism. 40Ar/39Ar mica ages and the tectonometamorphic relationship with the Eocene Cyclades–Menderes thrust, which occurs above the Selimiye nappe in the study area, suggests an Eocene age of metamorphism in the Selimiye nappe. Metasedimentary rocks of the Çine nappe 20–30 km north of the Selimiye shear zone record maximum P–T conditions of 8–11 kbar and 600–650 °C. An age of about 550 Ma is indicated for amphibolite facies metamorphism and associated top‐N shear in the orthogneiss of the Çine nappe. Our study shows that simple monophase tectonometamorphic fabrics do not always indicate a simple orogenic development of a nappe stack. Preservation in some areas and complete overprinting of those fabrics in other areas apparently occur very heterogeneously.  相似文献   
108.
New data on the metamorphic petrology and zircon geochronology of high‐grade rocks in the central Mozambique Belt (MB) of Tanzania show that this part of the orogen consists of Archean and Palaeoproterozoic material that was structurally reworked during the Pan‐African event. The metamorphic rocks are characterized by a clockwise P–T path, followed by strong decompression, and the time of peak granulite facies metamorphism is similar to other granulite terranes in Tanzania. The predominant rock types are mafic to intermediate granulites, migmatites, granitoid orthogneisses and kyanite/sillimanite‐bearing metapelites. The meta‐granitoid rocks are of calc‐alkaline composition, range in age from late Archean to Neoproterozoic, and their protoliths were probably derived from magmatic arcs during collisional processes. Mafic to intermediate granulites consist of the mineral assemblage garnet–clinopyroxene–plagioclase–quartz–biotite–amphibole ± K‐feldspar ± orthopyroxene ± oxides. Metapelites are composed of garnet‐biotite‐plagioclase ± K‐feldspar ± kyanite/sillimanite ± oxides. Estimated values for peak granulite facies metamorphism are 12–13 kbar and 750–800 °C. Pressures of 5–8 kbar and temperatures of 550–700 °C characterize subsequent retrogression to amphibolite facies conditions. Evidence for a clockwise P–T path is provided by late growth of sillimanite after kyanite in metapelites. Zircon ages indicate that most of the central part of the MB in Tanzania consists of reworked ancient crust as shown by Archean (c. 2970–2500 Ma) and Palaeoproterozoic (c. 2124–1837 Ma) protolith ages. Metamorphic zircon from metapelites and granitoid orthogneisses yielded ages of c. 640 Ma which are considered to date peak regional granulite facies metamorphism during the Pan‐African orogenic event. However, the available zircon ages for the entire MB in East Africa and Madagascar also document that peak metamorphic conditions were reached at different times in different places. Large parts of the MB in central Tanzania consist of Archean and Palaeoproterozoic material that was reworked during the Pan‐African event and that may have been part of the Tanzania Craton and Usagaran domain farther to the west.  相似文献   
109.
Abstract. The Ta'ergou tungsten deposit in Gansu province, northwestern China, is located in the western part of the North Qilian Caledonian orogen, and consists of scheelite skarn bodies and wolframite quartz veins. The tungsten‐bearing skarn developed by the replacement of carbonate layers intercalated in the Precambrian schist and amphibolite whereas wolframite‐quartz ore veins developed along a group of fractures that cut through horizontal skarns. The Ta'ergou tungsten deposit is genetically related to the Caledonian Yeniutan granodiorite intrusion and occurs ca. 500 m wide in the exo‐contact zone 300 ~ 500 m apart from the intrusion. The granodiorite displays a lower grade of differentiation, low content of SiO2 and high contents of mafic components. There are three types of fluid inclusions in the wolframite‐quartz vein systems, i. e. aqueous, CO2‐H2O and CO2‐rich. The homogenization temperature of aqueous inclusion ranges from 140 to 380d?C and their salinities from 6.4 to 17.4 equivalent wt% NaCl. Laser Raman spectroscopy shows that the inclusions contain a relatively high content of CO2. The δ34S values of skarn type sulfides range from +8.1 to +12.7 per mil and those of quartz vein sulfides from +9.3 to +14.9 per mil, similar to sulfides of the granodiorite with from +6.0 to +11.7 per mil. The δ18O values of quartz are between +10.5 and +13.3 per mil and those of wolframite between +3.4 and +5.1 per mil. The δ18O water values of ore forming fluids range from +0.6 to +6.4 per mil and suggest the mixture of magmatic fluids with meteoric water formed the ore‐forming fluids. It has been proved that Precambrian strata in the west sector of North Qilian region are enriched in tungsten. We propose the strata were remelted to be tungsten‐granitoid during subduction. The polymetallic tungsten was gradually accumulated into the roof pendants of the granite intrusion by fractional crystallization and then was deposited by hydrothermal fluids during metasomatism and infilling along fractures. On the other hand, the granite intrusion also acted as “heating machine” to make hydrothermal fluids leach out the metals from Precambrian strata and these metals joined the ore‐forming hydrothermal system.  相似文献   
110.
Cleavage-fissility perpendicular to bedding is a common feature in the external part of fold-and-thrust belts. Three techniques were used to determine the internal distortion in the frontal Southern Pyrenees: the analysis of strain markers such as burrows and rain drops, the measurement of fissility, and the measurement of anisotropy of magnetic susceptibility (AMS). The comparison of the three techniques showed a good fit although they differ in sensitivity to penetrative strain variations in the range of deformation values explored in the study case. On the regional scale, the values of layer parallel shortening (LPS) derived from the markers analysis are very constant and account for 16–23% of shortening. These values are two to three times larger than the shortening values calculated from the restoration of the macroscopic scale structures and indicate a good decoupling above the Cardona salt Formation. This study permitted an accurate restoration of the low-amplitude el Guix detached anticline.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号